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Abstract 

Several approaches exist to estimate peak pressure and temperature (PT) conditions of a 
single metamorphic rock sample. Because of many reasons from analytical problems to 
uncertainty in mineral solution models, all these calculations are rather uncertain making 
spatial interpretation of the data set for a whole metamorphic terrain problematic. In this study 
Error Kriging (de Marsily, 1984) is used to calculate PT maps for the Swiss Central Alps and 
the results are compared to those got by other kriging methods. 
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1. INTRODUCTION 
When one seeks to interpret the results of thermobarometric studies, the spatial context is 
obviously important. Graphical representations, e.g. isotherms and isobars on maps or 
profiles, are helpful in interpreting thermobarometric data sets in a regional context. For 
geologists to assess the significance and implications of P-T data, it may indeed be crucial to 
see them together with results from geophysical, tectonic, or geochronological studies. 
Similarly, in modeling studies it may be most useful to compare the thermal or baric field of an 
orogen with predictions based on theoretical simulations. For all these reasons, we need 
reliable graphical representations of spatially discrete P-T data sets. As these data sets may 
include various forms of information, commonly containing quite variable uncertainties, the 
task of interpolating and extrapolating such data sets demands adequate tools. 

2. PT dataPT data 
Several methods exist to estimate P and T data for a given metamorphic assemblage, either 
from traditional Fe-Mg exchange thermometers and net-transfer type barometers (such as 
GASP), or from more reliable multi-equilibria techniques (Berman 1991, Gordon 1992). A 
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number of authors (e.g. Kohn, Spear 1991, Lieberman, Petrakakis 1991, Gordon 1992, 
Holland, Powell 1994) have investigated the uncertainty of various PT-estimation methods, 
which are due to numerous sources of error, like electron microprobe calibration, counting 
statistics during measurement, mineral formula calculation, mineral solution models among 
many others. Evaluation of these individual uncertainties may allow their propagation into a 
finite statistical error of P and T data. Such results may then be quoted as „crisp” PT data (e.g. 
500±25°C, 2.8±0.6 kbar). Other thermobarometric approaches rely on phase diagrams (such 
as petrogenetic grids calculated using DOMINO/THERIAK software) and produce a “permitted” 
PT-window for each assemblage (e.g. 500-540°C). In this case no statistical error value is 
calculated; uncertainty appears as an inequality type of datum, i.e. an interval in T or P. 
A different way to present uncertainty is by means of fuzzy numbers (e.g. Dubois, Prade, 
2000). Fuzzy numbers are defined through "membership functions". The value of a 
membership function (m(x) in the [0,1] interval) depends on how possible (not how 
mathematically probable!) the datum (x) is. Defining the fuzzy numbers is usually based on 
qualitative or semiquantitative information. For example, if temperature is with known (without 
any doubt) to lie between 450 and 600 °C, and is possibly in the 500-550 °C interval, the 
proper fuzzy number would be a trapezoid: 

 0,  if T < 450 °C 

  (T-450)/50,  if 450 °C < T < 500 °C 

      m(T) = 1,  if 500 °C < T < 550 °C 

  (600-T)/50, if 550 °C < T < 600 °C 

 0,   if  T > 600 °C 

There are two reasons to prefer fuzzy numbers to standard error. Firstly, there is in most 
cases no proof that the uncertainty in P- and T-data are of probability type (e.g. Gaussian). 
Secondly, both error and inequality type data are easily transformed to fuzzy data, which thus 
offer a way to construct a data set having a uniform measure of uncertainty. 
Although, there are different ways to define and calculate uncertainty in data, their spatial 
representation is more problematic; interpolating between data that have different uncertainty 
is not a simple matter. In what follows, different interpolation methods are presented and 
tested, which are considered promising for mapping P- and T-data. 

3. Interpolation methods applied 
Thermobarometry yields P and T data in spatially discrete form, hence for many questions 
spatial interpolation (or limited extrapolation) is required, most notably in the production of 
maps and profiles. Traditional interpolation techniques, such as linear interpolation (by hand or 
machine), trend surface analysis or inverse distance interpolation have long been found 
useful, yet they all have significant disadvantages. Inverse distance method, for example, 
tends to generate unrealistic „bull's-eye” shaped structures surrounding the position of data 
points. None of them take into account the real spatial structure of the data set, and none of 
them allow an estimation of interpolation error. 
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Kriging, a family of stochastic interpolation methods, has a fundamental role in geostatistics for 
decades. Various texts and handbooks go deep into its basic concept and are not discussed 
here (e.g. Matheron, 1970, Cressie, 1991), Wackernagel, 1995). In what follows ordinary 
kriging system (OK) with and without nugget effect will be used. 

4. Kriging with uncertain data 
Ordinary kriging is a good interpolator in cases where reliable data exist in sufficient number 
(and spatial density). However, geostatistics has spread into several areas including hydrology 
and soil sciences, where the conditions and requirements for OK are not always satisfied. A 
common problem is the insufficient quantity or quality of measurements. In order to get a 
useful interpolator in such cases, a number of attempts have been made to incorporate 
additional information into the kriging system. Bárdossy et al. (1988) present an exhaustive 
collection of these approaches. Some of these shall be discussed here in the context of 
thermobarometry, the goal being to represent regional results as maps of continuous 
isotherms and isobars. 
In the case of mapping metamorphic P and T, difficulties arise because the data are of 
variable type and precision, and their spatial distribution tends to be far from uniform. Methods 
used to estimate statistical errors in thermobarometric data have received attention in recent 
years (e.g. Kohn, Spear 1991, Lieberman, Petrakakis 1991, Gordon 1992, Holland, Powell 
1994). Where the data set suggests that other types of uncertainty should be incorporated in 
the kriging system, this is possible by two approaches called soft kriging (Journel, 1986) and 
fuzzy kriging. A soft kriging system works with inequality type data and/or constraint intervals. 
This procedure may be useful in PT mapping, where the mineral assemblages or petrogenetic 
net model allow only an estimation of P-T intervals (e.g. Tmin and Tmax). Both error and interval 
type uncertainties can easily be transformed to fuzzy numbers, making it possible to use data 
sets with mixed types of information. However, at the present stage, the fuzzy kriging 
estimator tends to use either only fuzzy or only crisp data for interpolating, depending on the 
initial conditions (Bárdossy et al., 1990a, b). For fuzzy kriging to yield reliable results, 
considerable computational effort is needed. 
Error kriging 1 (EK) follows very simply from OK: One uses an error ε i associated with each 
datum Z(xi), with the following constraints (Marsily, 1984): 
-   E[ε i] = 0, i = 1 ... n             ε i is not a systematic error. (E is the mean); 
-   Cov[ε i, ε j] = 0, ∀ i ≠ j errors (ε) are not correlated with each other; 
-   Cov[ε i, Z(xj)] = 0, ∀i, ∀j errors (ε) are not correlated with data; 
-   σi

2 is known for each i. 
Compared to OK, the only difference in these conditions is that the kriging system now has 
values of -σi

2 (instead of zero) in the diagonal elements of the error matrix. As a consequence, 
the estimator uses normal distributions with a given mean and variance for interpolation. It is 
probably fair to say that only the best thermobarometric data sets may come close to satisfying 
the above four conditions reasonably well. For example, even if multi-equilibrium techniques 
are used, a (minor) systematic error cannot be ruled out. Additionally, at low temperature 

                                                               
1 Following a suggestion by A. Bárdossy (pers. comm.), the term "kriging with uncertain data" used by Marsily (1984) has been 

changed to "error kriging". 
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conditions T estimation becomes less accurate, hence there is likely a slight correlation 
between T-data and their error. However, for good thermobarometric data sets, estimation 
errors should come close to satisfying all four constraints fairly closely, in which case EK is the 
method of choice to interpolate P-T data. 
The use of OK and EK kriging to generate PT maps is presented here for the example of the 
Swiss Central Alps. By way of example, the main steps required in any type of kriging analysis 
and the graphical representation of the results are documented first. In the subsequent section 
the results are tested by cross validation (e.g. Wackernagel, 1995), and the maps obtained by 
these two different approaches are compared. 

5. A case study: P, T maps of the Swiss Central Alps 
120 T-data and 97 P-data for the Swiss Central Alps have been selected for constructing 
isotherms and isobars. For a description of the geology, methods, and data sets see Engi et 
al. (1995) and Todd, Engi (1997). Error data in P and T were calculated using program 
INERSX, if at least three independent reactions existed. For all other data points Terr was 
assumed as 50°, and Perr = 2 kbar. 

5.1. Sequence of spatial data analysis 
The spatial distribution of data points in both cases (P and T) is rather uneven. In relatively 
large areas, geological conditions are unfavorable, and no data points exist, whereas clusters 
of data exist in valleys with suitable outcrops, where detailed and multiple sampling was 
possible. Clustered distributions of data points usually lead to an estimation error in 
variography (Armstrong, 1984). In order to avoid this problem, a moving window declustering 
method was used prior to the calculation of variograms. This process substitutes data that fall 
into a given rectangle (spatial window) by their arithmetic mean. Moving this window and 
calculating the means over the study area result in a data distribution of equal density. The 

size of the windows is chosen on the basis 
of the average spacing between locations 
and the size of the entire area being 
studied. If the window is too large, the 
number of points left after the process 
insufficient. If it is chosen too small, no 
reliable statistics can be obtained for most 
windows. For the area studied in the 
Central Alps (~4000 km2), overlapping 
windows 5*5 km in size were found 
satisfactory for both T and P. For moving 
window statistic, calculations the program 
MWINDOW (Murray, Baker, 1991) was 
used. Variograms were calculated based on 

the cluster means rather then the original database. Both experimental variogram calculations 
and theoretical variogram fitting were performed using the program VARIOWIN (Pannatier, 
1994). 
On the experimental variogram that characterizes the spatial variation in temperature data, two 
different sills can be distinguished. The nested structure variogram (Serra, 1968) fitted to it is 
the sum of two Gaussian type variograms. One of them has small (5 km) range, the other 
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significantly larger (29.5 km) range: 
γ(h)=1520*G(5)+2520*G(29.5), where ”G” 
denotes the Gaussian variogram function 
(Fig. 1/a). A sum of two Gaussian 
variograms was also found best for 
pressure (Fig.1/b.) 
(γ(h)=0.234*G(10.2)+0.148*G(43.6)), but 
the range of both individual variograms for 
P is significantly higher than in the case of 
T. The fit for P is weaker than for T, 
probably due to a hole effect (Cressie, 
1991), shown by a negative correlation in a 
small range of the variogram (Fig. 1/b). 
Anisotropy was not calculated for either 
case. 

Finally, theoretical variogram parameters were 
combined with the original data for OK and EK 
in a program written by Bárdossy, A. 
(unpublished). This code allows both data 
estimation and kriging error calculation to be 
performed simultaneously. Each kriging 
parameter was chosen to be the same in the 
two processes, but for OK the estimated errors 
were set zero. Contour lines were then 
generated using program SURFER (Golden 
Software Inc., 1994) (Fig. 2/a-g). 
 
 
 

5.2. Results and Comparison of Different Methods 
EK error maps for both P and T exhibit low 
kriging standard deviations (Fig. 2/a-d). In 
both cases the interpolation is best where 
data points form clusters, while the error is 
largest in areas for which no data exist (see 
arrows on Figs 2/b, 2/d). Although the 
structure of the two error maps is similar, the 
dimension of low error areas is significantly 
smaller for pressure (Fig. 2/d). In addition, 
data clusters with a large error exist, 
indicating that the uncertainties in 
metamorphic pressure estimates are larger 
than in T. 
OK maps for both T and P exhibit unrealistic 
results, with peaks and ditches forming in many areas. Extreme values in P – up to 20 kbar or 
as low as 0 kbar – were locally interpolated (Fig. 2/e). Estimated temperature data vary  
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between 0 and 1700 °C (not presented). The results emphasize the problem of using exact 
interpolation methods for data sets that contain uncertainty. The reason of the conspicuous 
(mis)estimation is likely that significantly different values, both in the initial P and T data sets, 

exist close to each other. Because no 
nugget effect was involved in the variogram 
used, OK is an exact interpolator, i.e. the 
estimated surface tends to pass through 
each datum point. This ambition leads to 
bad interpolation results in areas where 
significantly different values exist. If OK with 
a nugget effect model (smoothing 
interpolator) is used, a more realistic result 
may be obtained. By using this variogram 
for kriging, one can generate smoothed 
maps even in areas having higher 
uncertainty in the data (Fig. 2/f). The error of 
estimation using OK is significantly larger 

than for EK in areas where data points are numerous (Fig. 2/g). On the other hand, for 
extrapolation OK appears to be more 
reliable, as shown by the small error values 
towards the border of the study area as well 
as in domains lacking data. 
The reliability of two maps calculated by EK 
and OK with nugget effect, respectively, can 
also be tested by cross a validation 
procedure. In this process each sample 
value at location x0 is removed in turn from 
the data set and Z*(x0) is estimated using the 
other samples. Comparison of the measured 
and the estimated data helps to identify 
apparent bias. For EK and OK the average 
of the T differences is as low as 2.5 and 0.8 
°C, respectively, no systematic overestimation is seen in either case. Correlation coefficients  
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between estimated and measured data are similar in the two cases (r=0.67 for both), and the 
two estimations produce similar data (r=0.99). On Fig. 4 one can see that EK reproduce the 
original data well, while the measured and the estimated T data are barely correlated (r=0.14) 
in the case of the OK map (without nugget effect). Whether the slight underestimation for high 
T data and the tendency to overestimate low T data (Fig. 3) for both EK and OK is 
characteristic of these interpolation methods, or whether these effects are inherited from the 
data set used is out of the scope of the present study. 

Based on the previous reasoning one can 
say that reliable maps can only be obtained 
if the uncertainty in the data is involved in 
the interpolation algorithm. The two 
approaches used (EK, OK) have different 
advantages and disadvantages. If a 
sufficient number of data points exist, with a 
spatial distribution close to uniform, EK is 
preferred because this method produces 
the smallest kriging error. For highly 
clustered data sets, as well as to get 
reliable maps close to the border of the 
area, OK is the superior method. 
 

5.3. Geological representation of kriging results 
For possible application of the PT maps in geological interpretation two examples are briefly 
presented. In both cases maps got by EK method are used. 
1) The T/P ratio may be an informative parameter when comparing different metamorphic 
terrains. Based on isotherms and isobars, the construction of a T/P map is a simple calculation 
(Fig. 4). To propagate errors into the T/P map, the following expression should be used: 
 

σT / P =
P

∑ ∂ (T / P )

∂P

 
 
  

 
 

T

∑ *
∂ (T / P )

∂T

 
 
  

 
 * σP * σT * r PT  
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where rPT is the correlation coefficient 
between P and T. 
 
2) The exact position of the sillimanitein 
isograd in the Central Alps has been argued 
for a long time. By taking into account the 
experimentally determined P-T-location (e.g. 
Holdaway, 1971) of the kyanite-sillimanite 
reaction, the appropriate combination of 
isotherms and isobars results in the 
representation of the univariant curve in the 
real space. If the error maps are considered 
as well (by using a function equivalent to the 
one above), one can represent the stability 
limit for sillimanite with an error envelope (Fig. 5). This confidence interval may then be 
compared to the mineral zone boundary as delimited by field observation (e.g. Irouschek 
1982, Todd, Engi 1997). 
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